副教授
联系信息
电话: 0755-36882005
邮箱: ma.shaohua@sz.tsinghua.edu.cn
教育经历
2013年11月—2017年08月 牛津大学 博士后
2010年10月—2013年10月 剑桥大学 博士
2009年10月—2010年10月 剑桥大学 硕士
2005年09月—2009年06月 中山大学 学士
工作经历
2021年01月—至今,清华大学深圳国际研究生院(SIGS),副教授(特别研究员)
2020年06月—至今,清华大学清华-伯克利深圳学院(TBSI)副教授(特别研究员),博士生导师
2017年09月—2020年06月,清华大学清华-伯克利深圳学院(TBSI),助理教授(特别研究员),博士生导师
学术兼职
《新型碳材料》杂志副主编(中科院煤化所主办);
教学课程
机械生物学介绍
再生医学技术进展
精准医疗平台的设计及其疾病诊断和治疗应用
研究领域
研究领域:类器官与器官打印、器官芯片与微流控、类器官移植与再生修复、活体组织多模信息获取精准医疗平台的设计
主持项目:国自然面上项目、深圳市科创委基础研究重点项目和深圳湾开放基金项目等。
成果:以一作/通讯共发表论文22篇,其中以通讯作者发表Nature Machine Intelligence, Matter, Cell Reports Medicine, Cell Reports Physical Science, Patterns等CNS子刊,申报中国发明专利17项(含PCT专利四项)。
代表性论文
[1]Shengwei Jiang, Haoran Zhao, Weijie Zhang, Jiaqi Wang, Yuhong Liu, Yuanxiong Cao, Honghui Zheng, Zhiwei Hu, Shubin Wang, Yu Zhu, Wei Wang, Shuzhong Cui, Peter E. Lobie, Laiqiang Huang*, Shaohua Ma*, An automated organoid platform with inter-organoid homogeneity and inter-patient heterogeneity, Cell Reports Medicine (Cell Press), 2020, 1, 100161.
[2]Haoran Zhao, Zitian Wang, Shengwei Jiang, Jiaqi Wang, Zhiwei Hu, Peter E. Lobie, Shaohua Ma*, Microfluidics synthesis of injectable angiogenic microgels, Cell Reports Physical Science (Cell Press), 2020, 1, 100047.
[3]Yong Wang, Mengqi Ji, Shengwei Jiang, Xukang Wang, Jiamin Wu, Jintao Fan, Shaohua Ma*, Lu Fang*, Qionghai Dai*, Augmenting vascular disease diagnosis by vasculature-aware unsupervised learning, Nature Machine Intelligence, 2020, 2, 337–346.
[4]Edgar A. Galan, Haoran Zhao, Xukang Wang, Qionghai Dai, Wilhelm Huck, Shaohua Ma*, Intelligent microfluidics: The convergence of machine learning and microfluidics in materials science and biomedicine, Matter (Cell Press), 2020, 3, 1893–1922.
[5]Yichao Zheng, Yinheng Zhu, Mengqi Ji, Rongpin Wang, Xinfeng Liu, Mudan Zhang, ChooHui Qin, Lu Fang*, Shaohua Ma*, A Learning-based Model to Evaluate Hospitalization Priority in COVID-19 Pandemics, Patterns (Cell Press), 2020, 1, 100092.
[6]Shaohua Ma*, Haoran Zhao, Edgar A. Galan, Integrating Engineering, Automation, and Intelligence to Catalyze the Biomedical Translation of Organoids, Advanced Biology, 2021, 4, accepted.
[7]Weijie Zhang*, Donghui Li, Shengwei Jiang, Edgar A Galan, Laiqiang Huang*, Shaohua Ma*, Microfluidic droplets as structural templates for Matrigel to enable 1-week large organoid modeling, Chemical Engineering Science, 2021, 238, 116632.
[8]L. Zeng, Q. Liao, H. Zhao, S. Jiang*, X. Yang, H. Tang, Q. He, X. Yang, S. Fang, J. He, W. Cui, L. Huang, Shaohua Ma, Shuzhong Cui*, Raltitrexed as a synergistic hyperthermia chemotherapy drug screened in patient-derived colorectal cancer organoids, Cancer Biology and Medicine, 2021. doi: 10.20892/j.issn.2095-3941.2020.0566.
[9]Bing Xu, Yuanxiong Cao, Zheng Zheng, Edgar A. Galan, Zhiwei Hu, Jun Ge, Xinhui Xing, Shaohua Ma*, Injectable mesenchymal stem cell-laden Matrigel microspheres for endometrium repair and regeneration, Advanced Biology, 2021, 4, accepted.
[10]Shaohua Ma*, Haoran Zhao, Edgar A. Galan, Modulating flow topology in microdroplets to control reaction kinetics, Advanced Biosystems, 2021, 4, 2000309.
[11]Jiaqi Wang, Xiaowei Tang, Zitian Wang, Jiawei Li, Shaohua Ma*, Extracellular scaffold design for ultra-soft microtissue engineering, Light: Advanced Manufacturing, 2021, 2, 11.
[12]Yifan Xing, Junyu Liu, Xiaojie Guo, Haipeng Liu, Wen Zeng, Yi Wang, Chong Zhang, Yuan Lu, Dong He, Shaohua Ma, Yonghong He, Xinhui Xing*, Engineering organoid microfluidic system for biomedical and health engineering: A review, Chinese Journal of Chemical Engineering, 2021, accepted. https://doi.org/10.1016/j.cjche.2020.11.013.
[13]Yuanxiong Cao, Haoran Zhao, Shaohua Ma*, Cascade pumping overcomes hydraulic resistance and moderates shear conditions for slow gelatin fiber shaping in narrow tubes, iScience (Cell Press), 2020, 23, 101228.
[14]Chengyong He, Fengkai Ruan, Shengwei Jiang, Jie Zeng, Hanying Yin, Rong Liu, Yongxing Zhang, Laiqiang Huang, Chonggang Wang, Shaohua Ma*, Zhenghong Zuo*, Black Phosphorus Quantum Dots Cause Nephrotoxicity in Organoids, Mice, and Human Cells, Small, 2020, 16, 2001371.
[15]Xinlong Pang, Haoran Zhao, Shaohua Ma*, A microfluidics reaction system for a multi- component reaction with automation and high chemoselectivity, Advanced Intelligent System, 2020, 2, 1900191.
[16]Swati Kaushik, Sonu Gandhi, Mehak Chauhan, Shaohua Ma, et al. Deepa Suhag*, Water-templated, Polysaccharide-rich, Bio-artificial 3D Microarchitectures as Extra-Cellular Matrix Bioautomatons, ACS Applied Materials & Interfaces, 2020, 12, 20912–20921.
[17]Shaohua Ma*, Microfluidics tubing as a synthesizer for ordered microgel networks, Soft Matter, 2019, 15, 3848–3853.
[18]Shaohua Ma*, Engineering inverse opals with enclosed voids via bottom-up assembly of double emulsions, Chemical Engineering Science, 2019, 205, 414-419.
[19]Shaohua Ma*, Gelatin-based microfluidics device with the feature sizes smaller than 100 μm for the production of oil-in-water emulsions, Microfluidics & Nanofluidics, 2019, 23, 35.
[20]Shaohua Ma*, N. Mukherjee, Microfluidics fabrication of soft microtissues and bottom-up assembly, Advanced Biosystems, 2018, 2, 1800119.
[21]Shaohua Ma, N. Mukherjee, E. Mikhailova, H. Bayley, Gel microrods for 3D tissue printing, Advanced Biosystems, 2017, 1, 1700075.
[22]Shaohua Ma, S. Balabani, W. T. S. Huck, Deformation of double emulsions under conditions of flow cytometry hydrodynamic focusing, Lab on a Chip, 2015, 15, 4291-4301.
[23]Shaohua Ma, J. Sherwood, W. T. S. Huck, S. Balabani, The microenvironment of double emulsions in rectangular microchannels, Lab on a Chip, 2015, 15, 2327-2334.
[24]Shaohua Ma, J. Sherwood, W. T. S. Huck, S. Balabani, On the flow topology inside droplets moving in rectangular microchannels, Lab on a Chip, 2014, 14, 3611-3620.
[25]J. Thiele, Y. Ma, S. M. C. Bruekers, Shaohua Ma, W. T. S. Huck, Designer hydrogels for cell cultures: A materials selection guide, Advanced Materials, 2014, 26, 125-148.
[26]Shaohua Ma, M. Natoli, X. Liu, M. P. Neubauer, F. M. Watt, A. Fery, W. T. S. Huck, Monodisperse collagen-gelatin beads as potential platforms for 3D cell culturing, Journal of Materials Chemistry B2013, 1, 5128-5136.
[27]Shaohua Ma, J. Thiele, X. Liu, Y. Bai, C. Abell, W. T. S. Huck, Fabrication of Microgel Particles with Complex Shapes via Selective Polymerization of Aqueous Two-Phase System, Small2012, 8, 2356-2360.
[28]J. Thiele, V. Chokkalingam, Shaohua Ma, D. A. Wilson, W. T. S. Huck, Vesicle budding from polymersome templated by microfluidically prepared double emulsions, Materials Horizons2014, 1, 96-101.
主要专利成果
国际专利: 1. H. Bayley, S. Ma, PCT/GB2017/051598, pending.
其他成果
1.Shaohua Ma, Nobina Mukherjee, Ellina Mikhailova, Hagan Bayley. Gel Microrods for 3D Tissue Printing. Advanced Biosystems, 2017, 1, 1700075. (Cover)
2.Ma S, Huck WT, Balabani S. Deformation of double emulsions under conditions of flow cytometry hydrodynamic focusing. Lab on a Chip, 2015, 15, 4291-4301. (Cover)
3.Ma S, Sherwood JM, Huck WT, Balabani S. The microenvironment of double emulsions in rectangular microchannels. Lab on a Chip, 2015, 15, 2327-2334.
4.Ma S, Sherwood JM, Huck WT, Balabani S. On the flow topology inside droplets moving in rectangular microchannels. Lab on a Chip, 2014, 14, 3611-3620.
5.Thiele J, Ma Y, Bruekers SM, Ma S, Huck WT. 25th anniversary article: Designer hydrogels for cell cultures: a materials selection guide. Advanced Materials, 2014, 26, 125-148.
6.J. Thiele, V. Chokkalingam, S. Ma, D. A. Wilson, W. T. S. Huck, Vesicle budding from polymersome templated by microfluidically prepared double emulsions. Materials Horizons 2014, 1, 96-101.
7.S. Ma, M. Natoli, X. Liu, M. P. Neubauer, F. M. Watt, A. Fery, W. T. S. Huck, Monodisperse collagen-gelatin beads as potential platforms for 3D cell culturing. Journal of Materials Chemistry B 2013, 1, 5128-5136.
8.S. Ma, J. Thiele, X. Liu, Y. Bai, C. Abell, W. T. S. Huck, Fabrication of Microgel Particles with Complex Shapes via Selective Polymerization of Aqueous Two-Phase System, Small 2012, 8, 2356 – 2360.
9.B. Zhang, X. Chen, S. Ma, Y. Chen, J. Yang, M. Zhang, The Enhancement of photoresponse of an ordered inorganic-organic hybrid architecture by increasing interfacial contacts, Nanotechnology 2010, 21, 065304.